PhD researcher on meta materials for video holography

Leuven - PhD
More than two weeks ago
Apply for this job

Holograms are high-resolution structures that allow to project 3D images in free space. Their resolution is higher than 10000 lines/mm, and their information density surpasses 10 gigabit/cm2. Until recently, one could not image to drive high-quality holograms at video rate due to the limitations in both patterning resolution and data bandwidth. But the silicon industry evolves at warp speed. Pixel densities below 100 nm and data rates above 1 Terabit/s are now within reach, and this opens perspectives to develop video-rate switchable full-color holograms on CMOS driving circuitry. Several physical principles for generating high-speed electrically-addressable holograms are currently being investigated. We research a route based on low-power electrical control of the local refractive index of a waveguide using a novel meta-material at the nanometer scale.
The focus of this PhD will be the investigation of a layer of fine-pitched patterns of conductive and non-conductive oxides with the goal to control the electric field with sub-100 nm precision and this layer will be used to control of a waveguide using the electro-optical effect. This control should be obtained without causing parasitic light scattering that would occur when metals would be used. As such, this new layer of meta-material should have new and unprecedented properties.
In this PhD, the student will be fully in charge of the realization and characterization of the desired meta-materials. The work comprises investigation of suitable oxides and nitrides, as well as the required patterning. Further, he/she will perform the characterization of their electro-optical properties. Finally, in collaboration with other groups, the layers need to be integrated onto drive electronics to arrive at a proof of concept video holographic device.
The candidate PhD student has a solid background in material engineering and material characterization. He/she has a strong affinity for semiconductor technology (patterning) and a keen interest in optical and electro-optical properties of materials. The research will be supported and guided by several experts from different domains in imec. It is part of the plan to make video holographic projection devices, funded by the ERC Advanced Grant video holography of the promotor Jan Genoe.

Required background: material engineering with affinity for optics (holography) and technology

Type of work: 10% literature study, 10% modeling, 40% material growth, 40% optical characterization

Supervisor: Jan Genoe

Daily supervisor: Robert Gehlhaar

The reference code for this PhD position is SE1804-03. Mention this reference code on your application form.

Apply for this job

Share this on


This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.

Accept cookies