CMOS and beyond CMOS
Discover why imec is the premier R&D center for advanced logic & memory devices. anced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
See how imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Dive into innovative solutions for sensor networks, high speed networks and sensor technologies.
Artificial intelligence
Explore the possibilities and technologies of AI.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business. Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Ab initio modeling of Extreme UV - Matter interactions

Ab initio modeling of Extreme UV - Matter interactions

PhD - Leuven | More than two weeks ago

Are you ready for a PhD project in theory closely related to our new atto second lab? Are you up to the challenge to unravel the chemistry needed for the next generation on nano tech?

For many decades, progress in the electronics industry has been, and is still, driven by the miniaturization of integrated circuits (ICs). Besides getting smaller the circuit designs are also getting more and more complex. Creating the patterns to realize these circuits on a chip is performed by using photolithography. In photolithography a chemical photoresist is irradiated by laser light in the desired pattern. After washing away the non-reacted residue, the layer below the areas that are not protected by the reacted photoresist can be etched to form the desired pattern. The wavelength of the laser light ultimately restricts how small the dimensions of the printed patterns can be made. To produce the patterns of the next generation electronics we will need to use 13nm laser light. This light has an energy of 90eV and does not directly interact with the valence electrons, which participate in chemical bonding, but first with much more strongly bound core electrons. Working at these high energies, therefor, makes for a much more complex chemistry. Developing a better understanding of this chemistry is essential to enable the next generation of electronic devices.

To investigate photoresist chemistry at EUV energies, imec has built a new lab, the AttoLab. At the AttoLab, the spectroscopic properties of the photoresists can be followed starting from only tens of attoseconds after the interaction with an EUV pulse. Changes in the various spectra indicate the occurrence of a reaction step or any other change in the material. However, determining what happened at the atomic level from the spectra alone is far from trivial. By comparing the measured spectra to results from quantum chemical calculations we can assign certain states of the material to specific spectra and so understand which reactions take place. Performing these calculations, making the comparisons, and modeling the full process will eventually develop the much-needed understanding of what happens in EUV photoresists and is the topic of this PhD. project.

In the cause of this project the PhD. student will be performing state of the art ab initio calculations. Performing this correctly and efficiently requires a proper understanding of the theoretical concepts on which the methods are based and on the way they are implemented in computer code to be executed on super computers. Which calculations to perform also requires an understanding of the relevant chemistry. During the project the understanding and the necessary skills will be trained at imec.

To be eligible, applicants must have a master degree in either physics or chemistry focusing on the theoretical aspect. Due to the complexity and the high amount of individual calculations, an efficient and robust automation and data processing infrastructure is essential. We continuously develop and improve such an infrastructure for all our calculations, written in python. Good knowledge of this language is hence required. A strong motivation, a good knowledge of solid-state physics or quantum chemistry and UNIX/LINUX are a plus. Excellent writing and oral communication skills are desired.

 

Required background: Master in Physics, Chemistry or Materials science with the emphasis on theory

 

Type of work: 90% modeling, 10% literature

Supervisor: Daniel Escudero

Co-supervisor: Michiel van Setten

Daily advisor: Michiel van Setten

The reference code for this position is 2021-067. Mention this reference code on your application form.

This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.