CMOS and beyond CMOS
Discover why imec is the premier R&D center for advanced logic & memory devices. anced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
See how imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Dive into innovative solutions for sensor networks, high speed networks and sensor technologies.
Artificial intelligence
Explore the possibilities and technologies of AI.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business. Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Active coolant flow control for energy-efficient integrated package level micro-jet cooling

Active coolant flow control for energy-efficient integrated package level micro-jet cooling

PhD - Leuven | More than two weeks ago

Cool the high power chips of the future

Liquid cooling is a promising technique for the cooling of high-performance and high-power applications. Typical liquid cooling solutions consists of a separate cooling unit with many parallel micro-scale channels, that is mounted on the chip using a thermal interface material as adhesive. For high performance liquid cooling solutions, this thermal interface material represents the thermal bottleneck and prevents boosting the power level for future applications. To limit the operating temperatures in electronic chip packages, the thermal resistance of these interface materials should be reduced or ideally, eliminated. In recent years, we have developed a package level integrated jet impingement based liquid cooling solution that delivers the liquid coolant cooling directly on the chip backside and avoids the use of the thermal interface material [1,2]. The liquid coolant is ejected on the chip surface through an array of parallel vertical micro-jets. The cooling solution, fabricated using low-cost plastic fabrication techniques, demonstrates a high thermal performance, good temperature uniformity and a reduction in cooler size while it only requires a low pumping power for the coolant flow circulation. To increase the number of application options for this promising cooling method, we want to introduce active control of the flow rate in the individual liquid jets to match the temporal and spatial coolant flow rate distribution with the heat load of the chip and to improve the cooler design in order to reduce the cooler drop and improve the flow and temperature distribution.

 

The objective of this PhD is to develop an active flow control actuation method and control strategy to control the flow rate in the jets depending on the local cooling need in order to maintain a constant chip temperature and to improve the energy efficiency of the cooler and the closed loop liquid cooling system. The design of the actuation mechanism should be compact to be integrated in the package level cooler.

 

In this PhD work, the following activities are foreseen:

  • Modeling of the impact of the controllable flow rate. This task involves the conjugate heat transfer and flow CFD simulation of the flow distribution in the cooler, the pressure drop over the cooler and the resulting temperature distribution in the chip.
  • Development of an active flow control actuation method and control strategy to control the flow rate in the jets depending on the local cooling need in order to maintain a constant chip temperature and to improve the energy efficiency of the cooler and the closed loop liquid cooling system. The design of the actuation mechanism should be compact to be integrated in the package level cooler. Demonstration of flow control on an advanced thermal test chip for the model validation and the experimental characterization of the cooler.
  • Application of topology optimization techniques for the complex internal geometry of the chip package level impingement cooler. The objective is to fabricate the improved cooler geometry using high-resolution 3D printing and to characterize the thermal performance of the cooler using imec’s high resolution thermal test chip.

 

  1. https://www.imec-int.com/en/imec-magazine/imec-magazine-february-2019/a-cold-shower-for-chips
  2. https://www.imec-int.com/en/articles/imec-demonstrates-efficient-cost-effective-cooling-solution-for-high-performance-chips


Required background: Master in Engineering majoring in Mechanics, Material science, Energy or Microtechnology or Master in Science (Physics, Chemistry, Mathematics)

Type of work: 10% literature study, 40% modeling, 40% experimental analysis, 10% reporting in meetings, conferences and journals

Supervisor: Ingrid De Wolf

Daily advisor: Herman Oprins

The reference code for this position is 2021-033. Mention this reference code on your application form.

This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.