CMOS and beyond CMOS
Discover why imec is the premier nanoelectronics R&D center in the development of industry-relevant solutions for advanced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
As a pioneer in nanoelectronics, imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Imec develops innovative solutions for sensor networks, high speed networks and sensor technologies for the Internet of Things.
Artificial intelligence
Artificial intelligence is no longer the stuff of science fiction: its technologies are ready and its possibilities are real. It’s time to explore them, and imec is ready to help you.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business.Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Additives and interfacial layers for thin film perovskite solar cells

Additives and interfacial layers for thin film perovskite solar cells

Master projects/internships - Genk | More than two weeks ago

Improving the performance and stability of highly efficient perovskite solar cells 
 

Hybrid organic-inorganic perovskite-based solar cells have emerged as a very promising photovoltaic technology. Since its introduction in 2009, the power conversion efficiency (PCE) has gone from 3.8% to 25.2% nowadays. Besides high efficiencies, perovskite solar cells (PSCs) have the possibility to become a very cheap technology, due to the use of abundant and cheap materials and due to simple solution-based processing at low temperatures. As the perovskite material yields a high absorption coefficient, only a few hundreds of nm thickness is enough to absorb more than 90% of the incoming visible light, making PSCs part of the thin film photovoltaics. Consequently, PSCs can be processed on flexible substrates, introducing a wide variety of possible applications.
Despite the high efficiencies, some obstacles have to be overcome in order to commercialize these solar cells. One issue is the scalability, which is the consequence of the simple, solution-based processing. It is very challenging to transfer the high efficiencies to larger substrates. The second issue, the scope of this work, is the stability. Perovskite is a sensitive material, as it easily degrades upon exposure to UV-light, high temperatures, oxygen, humidity, ... (outdoor conditions). Many improvements have been made in the last years by changing the perovskite composition (perovskite is a lab-made material after all) and changing the materials used for the selective contacts and electrodes. Nevertheless, further improvement is required in order to both push the efficiencies even higher and improve the stability.

In this work, the student will focus on the perovskite layer and its interfaces with the selective contacts. The goal is to improve the stability by using additives in the processing of the perovskite layers and by introducing interfacial layers (sub-nanometer thickness). The influence of these measures on the performance will be characterized through JV curves, EQE and absorption measurements. The influence on the crystal quality will be characterized mainly by (X-)SEM and XRD (with the possibility of FTPS and DLTS depending on the results). Finally, the influence on the stability will be characterized by monitoring the performance after or while stressing the PSCs (high temperatures, light soaking, ...).
The work will be conducted in the newly built laboratories at imec in EnergyVille, Genk.

Type of project: Thesis 

Duration: 6-12 months

Master's degree: Master of Science; Master of Engineering Technology; Master of Engineering Science 

Master program: Nanoscience & Nanotechnology; Materials Engineering; Chemistry/Chemical Engineering; Physics 

Supervising scientist: For further information or for application, please contact Stijn Lammar (stijn.lammar@imec.be).

Only for self-supporting students