CMOS and beyond CMOS
Discover why imec is the premier nanoelectronics R&D center in the development of industry-relevant solutions for advanced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
As a pioneer in nanoelectronics, imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Imec develops innovative solutions for sensor networks, high speed networks and sensor technologies for the Internet of Things.
Artificial intelligence
Artificial intelligence is no longer the stuff of science fiction: its technologies are ready and its possibilities are real. It’s time to explore them, and imec is ready to help you.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business.Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/High-Speed ADCs for Next-Generation Optical Links

High-Speed ADCs for Next-Generation Optical Links

PhD - Leuven | More than two weeks ago

Design >>100GS/s data converters for the future internet

General background on the application domain

Popular cloud-based software applications such as video-on-demand, internet search engines, streaming, social media all rely on warehouse scale data centers. These house tens of thousands of computing nodes, all interconnected via high capacity optical links. Optical transceivers for these links currently have 100Gb/s to 400Gb/s capacities, achieved through multiplexing multiple lanes, e.g. 4 lanes running at >50Gbaud (100Gb/s) PAM-4. Data center operators foresee a need for 800Gb/s and even 1.6Terabit/s optical links within the next 5 to 10 years, which will need an increase in signaling rate on these links up to at least 100Gbaud.

Specific scientific and technical objectives

A critical component for state-of-the-art optical transceivers is a high sampling rate (>>100GS/s) analog-to-digital converter (ADC). Such ADC allows implementation of advanced digital signaling processing (DSP) algorithms (equalization, forward error correction, …) to recover the transmitted bits from signals that will be severely distorted due to e.g. limited bandwidth of front-end electronics, optical modulators and detectors, chromatic dispersion introduced by the optical fiber etc. The use of ADCs (sampling at twice the baudrate) and DSP is now widespread for e.g. coherent optical links, as well as PAM-4 optical links, operating up till ~56Gbaud. 

At transmission rates up to and beyond 100Gbaud, no solutions today exist to realize sufficiently fast ADC's. Up till ~100GS/s, advanced CMOS nodes can be used to implement the ADC, but this is less obvious for higher rates. The speed of CMOS transistors no longer scales with technology nodes as fast as it used to, riding the wave of Moore's law does not work anymore. This enormous challenge calls for fundamental research into new architecture and technology options for optical receiver ADCs

The goal of this PhD is to investigate and implement routes for realization of ADC's with sampling rates well in excess of 100GS/s.  In a first phase, taking into account the limitations of current semiconductor processes, the ADC architecture will be defined. This will include e.g. hybrid implementations combining CMOS with SiGe BiCMOS processes, digital compensation techniques, ultra-fast ADC architectures, etc.  The second step of the PhD consists of the actual circuit-level implementation of both the critical blocks as well as the whole ADC in one or more tapeouts, which then in a final step can be characterized using the high-speed measurement available at imec.

Practical arrangements

This PhD is jointly supervised by the imec team of Jan Craninckx, one of the world-leading groups in the area of high-performance ADC design, and the team of Johan Bauwelinck and Peter Ossieur, who have an internationally recognized track record in the area of high-speed optical transceiver design. Both groups are looking to combine their knowledge on high-performance ADC design on one hand and high-speed transceiver realizations on the other hand to create the next generation of >100Gbaud capable optical links.

This is a challenging PhD topic, requiring a highly motivated PhD student with strong interest to develop design skills in leading-edge SiGe BiCMOS and/or advanced CMOS nodes. ​





Required background: Master in Electrical Engineering, analog IC design experience

Type of work: 10% literature, 50% design and simulation, 20% layout, 20% measurements

Supervisor: Guy Torfs, ,

Daily advisor: Ewout Martens

The reference code for this position is 2020-097. Mention this reference code on your application form.