Magnetoelectric devices for beyond CMOS applications

More than two weeks ago

Explore and evaluate the efficiency of the magnetoelectric effect in piezoelectric/magnetic devices

Among the technologies that could potentially represent a paradigm shift with respect to CMOS technology, spintronic computation presents several advantages to achieve area and power reduction. The possibility to perform multifrequency processing and the non-volatility of the magnetic materials could provide new functionalities to circuit designers for various applications. However, a major limitation for the realization of spintronic devices is the lack of a scalable and energy efficient transducer. A promising route for both low energy and an efficient control of the magnetization is the usage of the magnetoelectric effect, which couples electric fields to the magnetization. The magnetoelectric transducer consists of piezoelectric-magnetostrictive compounds (e.g. bilayers), in which the coupling between the electric and the spin domain occurs via strain. The strain induced in the piezoelectric layer by the applied electric field is transferred to the magnetostrictive film that in turn changes its magnetic state. The application in spintronic devices requires a detailed understanding of the coupling mechanism as well as the development of material systems to enhance the coupling efficiency.

‚ÄčWithin the thesis, the student will develop magnetoelectric devices based on different piezoelectric/magnetic systems and will characterize the magnetoelectric coupling in both static (DC) and radio-frequency regime. The thesis will range from material-oriented activities, such as the deposition and characterization of magnetoelectric compounds, device processing at imec's nanofabrication facilities, as well as advanced electrical characterization. This will allow to assess the potential of magnetoelectric devices for advanced spintronic applications, such as spin wave logic or magnetoelectric memories. The experimental work will be supported by modeling activities (materials, devices, circuits) in the spintronics group at imec. The student should have a strong interest in nanofabrication in a cleanroom environment as well as in leading edge research topics on magnetism and magnetic materials.

Type of project: Combination of internship and thesis, Thesis, Internship

Duration: > 6 Months

Required degree: Master of Science, Master of Engineering Science, Master of Engineering Technology

Required background: Physics, Nanoscience & Nanotechnology

Supervising scientist(s): For further information or for application, please contact: Florin Ciubotaru ( and Christoph Adelmann (

Imec allowance will be provided for students studying at a non-Belgian university.

Share this on


This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.

Accept cookies