CMOS and beyond CMOS
Discover why imec is the premier R&D center for advanced logic & memory devices. anced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
See how imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Dive into innovative solutions for sensor networks, high speed networks and sensor technologies.
Artificial intelligence
Explore the possibilities and technologies of AI.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business. Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Optimization and implementation of intravascular ultrasound (IVUS) imaging system on catheter with PMUT array

Optimization and implementation of intravascular ultrasound (IVUS) imaging system on catheter with PMUT array

Master projects/internships - Leuven | More than two weeks ago

Develop a smart catheter for tomorrow's surgical equipment

Optimization and implementation of intravascular ultrasound (IVUS) imaging system on catheter with PMUT array​

In the field of surgery and interventional medicine, size is a very critical factor. Therefore, MEMS technology, with its micrometer sized machines, is an ideal candidate to solve some of the crucial problems in this field. Catheters play a big role in minimal invasive procedures where they are for example used to fix damaged blood vessels. Nowadays, there are typically two methods to image the blood vessel at the catheter tip, being optical coherence tomography and ultrasound imaging. The first, has the advantage of currently providing higher resolution compared to its ultrasonic counterpart but the disadvantage of needing to flush away the blood in front of the catheter to free the optical path. In the big blood vessels such as the aorta, however, it is impossible to flush the blood. Therefore, this research focuses on development of an ultrasound imaging system to look in front of the catheter tip (forward looking IVUS) to lower the risk of damaging patients' blood vessels when performing procedures in the aorta and heart.

Classical ultrasound transducers consist of a thick layer of piezo material, sandwiched between two electrodes. Their miniaturized counterparts (PMUTs) allow for a much smaller form factor and easier integration with supporting electronics. A PMUT works on the principle of vibration of a membrane. These miniaturized drums contain a piezoelectric layer in their membrane that can generate and pick up mechanical deformation of the suspended membrane by applying or receiving an electrical signal over the piezoelectric layer. This allows PMUT to emit and receive ultrasound waves by respectively vibrating the membrane or detecting the deformation of the membrane by an incoming wave.

Fig 1: Sketch of PMUT cross-section and working principle.

Fig 1: Sketch of PMUT cross-section and working principle.

By using smart arrays of these small transducers and controlling electrically them in an organized manner, complex ultrasound fields can be generated and received. It is this beamforming feature of arrays of transducers that is at the base of ultrasound imaging.

In this work, the goal is to optimize and implement a forward-looking intravascular ultrasound system based on a PMUT array. The optimization can concern the ultrasound array (individual transducer design, array configuration, ...), the electronic system (connectivity towards sample, PCB design, ...) and imaging data analysis. Depending on the students' interest, the balance between simulations and experimental work will be steered. Generally, this is a perfect topic for students eager to understand complex systems with a hands-on attitude and interest for MEMS devices. The work is estimated to be: 40% simulations/calculations (f.e COMSOL, Matlab or likewise), 30% characterization, 30% hardware design and implementation. Furthermore, this gives you the opportunity to work on cutting edge innovative technology in an application oriented project.

Fig 2: conceptual sketch of the prototype.

Fig 2: conceptual sketch of the prototype.


The broader context of this work is a collaboration between the MEMS team of Imec and the Robot-Assisted Surgery Research Group within department of Mechanical engineering of KU Leuven.

 

Type of project: Thesis

Master's degree: Master of Engineering Technology, Master of Engineering Science, Master of Science

Master program: Mechanical Engineering, Biomedical engineering, Nanoscience & Nanotechnology, Physics, Electromechanical engineering, Electrotechnics/Electrical Engineering

Duration: 6-12 months

For further information or for application, please contact Veronique Rochus (veronique.rochus@imec.be).

This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.