CMOS and beyond CMOS
Discover why imec is the premier R&D center for advanced logic & memory devices. anced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
See how imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Dive into innovative solutions for sensor networks, high speed networks and sensor technologies.
Artificial intelligence
Explore the possibilities and technologies of AI.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business. Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Optimization of ferroelectric memory cells for next generation SCM

Optimization of ferroelectric memory cells for next generation SCM

PhD - Leuven | About a week ago

optimize the ferroelectric materials stack in workable memory devices for new storage applications

Because of the ever increasing demand for higher density memory in current electronic systems, nonvolatile memories have gone 3D by stacking many cells vertically on one single chip. However, this (Flash) roadmap suggests a doubling of the number of layers every 2-3 years to keep up with Moore’s law. Moreover, due to the low performance of these memories there is room for new memory technologies that can better bridge the gap between DRAM and Flash in order to optimize the system performance. Therefore, alternative (nonvolatile) memory solutions will be needed in the future.

One possible solution to this problem is the ferroelectric field effect transistor (FeFET) which allows for fast and low voltage low power nonvolatile storage. Another one is the ferroelectric capacitor which, combined with a regular access transistor, can provide a nonvolatile memory closer to DRAM. However, many challenges are remaining to be solved before entering the market in a real product, such as controlling the domain configuration and the associated variability, wake-up and imprint effects in the ferroelectric material and various device performance issues such as nucleation delay, cycling and retention.

The purpose of this project is to study and explain the characteristics of 3D FETs as well as capacitors from the point of view of SCM (Storage Class Memory) specifications as set forward by the systems community. Secondly, new device architectures can be proposed based on this basic understanding of the cell’s operation and implemented in state-of-the-art CMOS technology for the Gigabit and Terabit era.



Required background: physics, nanotechnology and nanoscience, electrical engineering

Type of work: 20% literature, 20% technology study, 60% experimental work

Supervisor: Valeri Afanasiev

Co-supervisor: Jan Van Houdt

Daily advisor: Nicolo Ronchi

The reference code for this position is 2021-016. Mention this reference code on your application form.

This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.