PhD - Gent Zwijnaarde | More than two weeks ago
Under the supervision of prof. Ingrid Moerman, you prepare a PhD dissertation on implementation of advanced WiFi chips for professional applications: end-to-end oriented efficient software-hardware co-design towards reliable and low-latency solutions in professional environments.
The Internet & Data Lab (IDLab) is an imec research group at Ghent University and the University of Antwerp. IDLab focuses its research on internet technologies and data science. IDLab is a joint research initiative between Ghent University and the University of Antwerp. Bringing together more than 300 internet experts, we develop technologies outperforming current solutions for communication subsystems, high speed and low power networking, distributed computing and multimedia processing, machine learning, artificial intelligence and web semantics. IDLab has a unique research infrastructure used in numerous national and international collaborations.
IDLab collaborates with many universities and research centers worldwide and jointly develops advanced technologies with industry (R&D centers from international companies, Flanders’ top innovating large companies and SMEs, as well as numerous ambitious startups).
The IDLab wireless team at Ghent University consists of more than 30 researchers and has gained profound scientific expertise and knowledge on wireless networking with a prime focus on end-to-end connectivity solutions covering all layers in the end-to-end protocol stack. For further development of the IDLab wireless research team in Ghent, we are looking for a PhD candidate in the domain of advanced WiFi-based wireless systems
Digital communication plays a pivotal role in professional environments, supporting both persons, machines and things to interact with each other over a communication network. In professional environments, such as industry automation (industry 4.0), communication becomes increasingly diverse, more reliable, time-critical and subject to change over time. For purposes such as mobility, flexibility or cost, wireless connectivity – in various forms, from sensor networks to high capacity networks - has become an integral part of professional networking environments.
Extrapolating these trends of how professional applications will evolve over the next 10 years, we want to advance wireless communications to the next level on these aspects: end-to-end latency, time synchronization accuracy among distributed applications across diverse network segments, reliability/QoS for high-priority and safety-critical traffic.
Today, we are far from achieving that vision, as most research is limited to theoretical or simulation studies, ignoring real-world impairments which is hindering uptake of wireless innovations in real-world application scenarios. Some examples of impairments are: non-ideal RF hardware, complex and dynamic wireless channels, limited digital processing capabilities in terms of clock-speed and footprint), quantisation errors due to conversion from floating to fixed point, etc.
Going from theory and simulation to experimentation is a huge step. Two options, software defined radio or commercial radio chips, both have their limitations. Software defined radio with PHY functionality implemented in software and controlled by a host PC, do not allow real-time operation needed to support real-world low-latency uses cases that require fast response times. Commercial radio chips are blackboxes with closed firmware and drivers and restrict innovation and experimentation to the higher-layer networking functionality above firmware and driver. Therefore, significant research efforts are required to open up and advance chip design by tackling many challenges:
This PhD vacancy targets to address these challenges, delivering solutions of the advanced WiFi chip for professional end-to-end communication networks that stand out in fulfilling, guaranteeing the challenging requirements of ultra-reliable and time-and-safety-critical applications running on top.
We offer a full-time position as a Ph.D. scholarship recipient, consisting of an initial period of 12 months, which –upon positive evaluation– will be extended to a maximum of 4 years.
We offer a dynamic and international work environment with a competitive salary and ample training and self-development opportunities.
The PhD position is available starting October 2022.
For further information, please contact Ingrid Moerman via ingrid.moerman@ugent.be
Please apply via this link. Your application should include the following documents: