CMOS and beyond CMOS
Discover why imec is the premier R&D center for advanced logic & memory devices. anced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
See how imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Dive into innovative solutions for sensor networks, high speed networks and sensor technologies.
Artificial intelligence
Explore the possibilities and technologies of AI.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business. Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Post doc Smart pills with breakable membranes for bio-sensing (CSC)

Post doc Smart pills with breakable membranes for bio-sensing (CSC)

Research & development - Leuven | More than two weeks ago

Develop imec’s smart pills platform, with one time use breakable membranes, for biosensing

Post doc Smart pills with breakable membranes for bio-sensing (CSC2021-043)

Project description

Please note that this project is in the framework of Chinese Scholarship Counsel (CSC)-IMEC-KU Leuven Scholarships. Please read the requirements before applying here.

This postdoc will help to lay a ground-breaking foundation for solving one of the most difficult challenges in in-line biosensing i.e. a universal smart little cube, that can be thrown into any bioreactor encompassing biosensing, on-board read-out and low-power communication circuits. The focus of this project will be on the development of an array of innovative, programmable, one-time use membrane valves above biosensors. When a membrane is disrupted, a single microwell for sensing becomes available, and the bioliquids meet the bioreceptors on the sensor so that sensing can start. During the postdoc, we will design, fabricate and characterize these electronically addressable single-use membrane structures on top of small cavities (eg. 50-100 μm). Membrane designs and actuation will be modeled (e.g. Matlab, Comsol, Ansys, etc.) to optimize their electrical and thermal properties and estimate the required electric current, voltage generated heat, their size, full array design and operation, and will guide the fabrication process (e.g. metal stack, thickness, mechanical stability). Intensive effort will be put in the fabrication of the dense array of membrane structures. All the fabrication work will be performed on 200 mm silicon wafers in imec´s state-of-the art processing line. Considering the membrane properties and designs as well as future integration scheme, a feasible process flow and biocompatible material stack will be defined. The mechanical and thermal properties of the membrane will be experimentally evaluated before finalizing the process for the complete device. Characterization of the breakable membrane includes electrical, thermal & mechanical tests in air, initially and in water, buffer and culture media. Actuation parameters will be optimized, (e.g. electric current, voltage, power consumption); the membrane behavior upon actuation will be studied to establish rupture size and timing, and heat dissipation. The experimental and simulation results will be compared with the simulation data to validate the model.

 

Promotor: Liesbet Lagae (KU Leuven)

Daily advisor: Aurelie Humbert (imec)

Manager: Simone Severi (imec)

Required background: Material engineering, mechanical or electrical engineering, Physics

Type of work: 30% modelling/simulations, 40% experimental/process, 30% characterization/measurements

Please note that this project is in the framework of Chinese Scholarship Counsel (CSC)-IMEC-KU Leuven Scholarships. Please read the requirements before applying here.

This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.