CMOS and beyond CMOS
Discover why imec is the premier R&D center for advanced logic & memory devices. anced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
See how imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Dive into innovative solutions for sensor networks, high speed networks and sensor technologies.
Artificial intelligence
Explore the possibilities and technologies of AI.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business. Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Postdoc Exploring fundamental performance and reliability of ultra-low power VCMA MRAM

Postdoc Exploring fundamental performance and reliability of ultra-low power VCMA MRAM

Research & development - Leuven | More than two weeks ago

VCMA is opening new territory for MRAM towards very low power and GHz operation. What does it take to make reliable VCMA switching? We count on you to find out!

Postdoctoral researcher Exploring fundamental performance and reliability of ultra-low power voltage-controlled magnetic anisotrophy MRAM  

What you will do

Magnetic random access memory (MRAM) has made extensive progresses to be a working memory solution with nonvolatility, high speed and low power consumption, exploiting spin-transfer torque (STT) as the key ingredient for fully electric operation. However, STT writing requires a substantial amount of spin-polarized currents flowing through the oxide barrier of a magnetic tunnel junction (MTJ), which ends up in the limitation to reduce the power consumption. Such intense tunneling current can also degrade the barrier of magnetic tunnel junctions (MTJ) to affect the reliability of memory cells. Moreover, STT writing can hardly achieve the speed faster than GHz regarding the general dynamics of magnetization in ferromagnetic layer.

One method to make advances in MRAM is spin-orbit torque (SOT) using spin Hall effect (SHE), where in-plane charge current flowing in a nonmagnetic layer generates a vertical spin current, leading to the magnetization reversal of the adjacent magnetic layer [1]. Voltage-controlled magnetic anisotropy (VCMA) is another promising method to enable ultra-low power writing operations [2]. It reduces the interfacial perpendicular magnetic anisotropy (PMA) with an electric field, or a voltage across the barrier in MTJ. Switching of magnetization by eliminating the PMA using voltage pulse without current is the key aspect of VCMA. It can also be combined with other writing scheme to be more efficient [3].

As the novel writing scheme of MRAM, VCMA switching has distinctive characteristics compared to the conventional STT switching. The VCMA writing via precessional re-orientation of the free layer leads to very sharp switching with ~ 1ns pulses. Ideally zero tunneling current is needed for writing with VCMA effect. Realistically however, it is required to allow a certain amount of current to flow through the MTJ to read the information with tunneling magnetoresistance, and the current can induce unwanted influences. Thus, the VCMA operation of MTJs with various conditions should be explored for optimum design of the device. 

As part of this postdoctoral research, your goal will be to establish fundamental links between the switching process and the device reliability parameters such as the write-error rate, impact of high retention and dielectric breakdown. It is also expected that the insight you gain allows you to propose advanced reading/writing schemes to improve reliability, as well as guidance for the free layer, dielectric or MRAM stack.

[1] I. M. Miron et al., Nature 476, 189 (2011)

[2] T. Maruyama et al., Nat. Nanotechnol. 4, 158 (2009)

[3] H. Yoda et al., IEEE IMW (2017)

What we do for you

We offer you the opportunity to join one of the world’s premier research centers in nanotechnology at its headquarters in Leuven, Belgium. With your talent, passion and expertise, you’ll become part of a team that makes the impossible possible. Together, we shape the technology that will determine the society of tomorrow.  

We are proud of our open, multicultural, and informal working environment with ample possibilities to take initiative and show responsibility. We commit to supporting and guiding you in this process; not only with words but also with tangible actions. Through imec.academy, 'our corporate university', we actively invest in your development to further your technical and personal growth.  

We are aware that your valuable contribution makes imec a top player in its field. Your energy and commitment are therefore appreciated by means of a competitive scholarschip. 

Who you are

  • You have a PhD in Materials Science/Engineering, Electrical Engineering, Physics, or relevant disciplines. 
  • You have in-depth understanding of the operation of MTJ device and the reliability of thin oxide layers, or at least one of the two. 
  • You have publications of the experimental works on the operation of MTJ device and the reliability of thin oxide layers, or at least one of the two. 
  • You can analyse a lot of measurement data using software such as Origin, JMP, Excel, or with scripts with python, MATLAB, C, etc. 
  • You are willing to discuss your results and conclusions with team members and are good at communicating in English. 

This postdoctoral position is funded by imec through KU Leuven. Because of the specific financing statute which targets international mobility for postdocs, only candidates who did not stay or work/study in Belgium for more than 24 months in the past 3 years can be considered for the position (short stays such as holiday, participation in conferences, etc. are not taken into account).