CMOS and beyond CMOS
Discover why imec is the premier R&D center for advanced logic & memory devices. anced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
See how imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Dive into innovative solutions for sensor networks, high speed networks and sensor technologies.
Artificial intelligence
Explore the possibilities and technologies of AI.
More expertises
Discover all our expertises.
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business. Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Surface chemistry and atomic layer etching of metals in non-aqueous solutions

Surface chemistry and atomic layer etching of metals in non-aqueous solutions

PhD - Leuven | More than two weeks ago

You will be involved in state-of-the-art CMOS research and benefit from our extensive know-how on material processing for nanoelectronics applications

Transition metals are becoming increasingly important in the field of spintronics. The technology is recognized as a new paradigm that can replace and be adopted in conventional electronic devices for semiconductor, storage, biomedical, and automobile applications. Moreover, spintronic devices are finding further utilization for the internet of things (IoT) and the wireless industry owing to the remarkable performance characteristics such as nonvolatility, low power consumption, high-speed read and write operation, and cost benefit in terms of productivity.

For spintronic device fabrication, patterning of stacked metal layers is a critical step. Various nanofabrication techniques have been investigated of which ion beam etching has proven successful. However, this dry etching technique can cause shorting across a tunnel barrier due to redeposition of metal atoms because of the formation of nonvolatile etching products. An ion beam impinging on the sample at a tilted angle can be used to remove these atomic residues, but this technique does not scale well with the ever-increasing density of device structures. Halogen plasmas have also been investigated, and they are known to yield high etch rates. However, the etched metal byproducts produced by the plasma tend to be also nonvolatile at low temperatures, which degrades device performance. By contrast, wet atomic layer etching (wet-ALE) offers a simple and attractive solution which can avoid these problems. Atomic layer etching processes are typically based on a two-step mechanism where self-limiting surface oxidation and oxide product dissolution are time-separated. Depending on the surface oxide chemistry, also a 1-step mechanism can be used to achieve wet-ALE conditions. The proposed PhD work will explore new wet-ALE approaches for the etching of various metallic elements and alloys. The target materials will be at start pure elements such as Ru, Ni, Co, Fe and will be then extended to metal alloys such as RuAl and Ni3Al. Of special interest is the use of solvent-based chelating chemistries. Fundamental insights in the surface chemistry of metals are key to achieve the requirement of wet-ALE: the ability to selectively control oxidation and dissolution rates with atomic-scale resolution.

As a PhD student, you will learn to work in a highly dynamic and multicultural environment and be exposed to a large variety of analytical techniques and experimental methods. Inductively coupled plasma mass spectrometry (ICP-MS) in combination with electrochemical measurements will be used to study the metal/electrolyte interface in the parameter space. Based on these results, basic insights can be obtained on atomic-scale oxidation/dissolution kinetics and predict galvanic effects between metals in a stack. Surface chemistry and physics will be studied both ex situ and post operando by x-ray photoelectron spectroscopy (XPS) and high-resolution synchrotron radiation photoemission spectroscopy (SRPES). Other complementary physical characterization techniques like elastic recoil detection analysis (ERDA), electrical measurements, atomic force microscopy (AFM), scanning and transmission electron microscopy (SEM, TEM) are available to support your mechanistic studies on wet-ALE processing.

Required background

We are looking for an enthusiastic and results-driven PhD candidate with a strong background and interest in the chemistry and physics of materials.  



Required background: Chemistry, Physics or Materials Science


Type of work: 60% experimental work, 25% data interpretation, 15% literature study and writing

Supervisor: Stefan De Gendt

Daily advisor: Dennis van Dorp, Harold Philipsen, Jean-Francois de Marneffe

The reference code for this position is 2021-026. Mention this reference code on your application form.