CMOS and beyond CMOS
Discover why imec is the premier nanoelectronics R&D center in the development of industry-relevant solutions for advanced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
As a pioneer in nanoelectronics, imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Imec develops innovative solutions for sensor networks, high speed networks and sensor technologies for the Internet of Things.
Artificial intelligence
Artificial intelligence is no longer the stuff of science fiction: its technologies are ready and its possibilities are real. It’s time to explore them, and imec is ready to help you.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business.Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Ultrathin Ferroelectric complex oxides

Ultrathin Ferroelectric complex oxides

PhD - Leuven | More than two weeks ago

Developing next-generation ferroelectric complex oxide materials scaled for use in novel device architecture.

In recent years, there has been a renewed interest in ferroelectrics in low power integrated electronics such as memory. The discovery of ferroelectric hafnia has led to further scaling of layers to sub 10 nm thicknesses. However, the multiphasic nature of hafnia yields poor endurance and across-wafer repeatability. Complex oxides such as perovskites offer a an extremely flexible structure class of materials that offer a wide variety of ferroelectrics with tunable dielectric properties. However, dead-layer effects, negative conduction band offsets with Si, and complex stoichiometries, make the integration and scaling of these materials challenging on devices in large wafer production. Ferroelectricity has been observed in ultrathin films in epitaxy but polycrystalline films, which are preferred in production, have yet to be demonstrated.

The development of complex oxide-based materials will be undertaken targeting ferroelectricity in ultrathin layers for devices. Pulsed laser deposition (PLD) will be used on 200mm wafer scale to deposit and optimise complex oxide, perovskite-based materials. Interfacial and strain engineering will be used to minimise dead-layers, and other phenomena that could negatively effect ferroelectricity in these layers. Understanding the growth, structural mechanisms, the role of strain and interfacial chemistries on the ferroelectric response will be key to building a knowledge library and proof-of-concept for the operation of ultrathin ferroelectric complex oxides.

The candidate should have a Master's degree in physics, chemistry, materials, or related subject. Experience in thin film growth and/or complex oxides is a plus. The chosen candidate will be able to work both independently and as part of a team, will be enthusiastic and driven, and will be comfortable with presenting their work in front of their peers.​​



Required background: Chemistry, Physics, Engineering Science or equivalent

Type of work: 90% experimental 10% simulation

Supervisor: Ingrid De Wolf

Daily advisor: Sean McMitchell, Christoph Adelmann

The reference code for this position is 2020-020. Mention this reference code on your application form.