CMOS and beyond CMOS
Discover why imec is the premier R&D center for advanced logic & memory devices. anced logic & memory devices.
Connected health solutions
Explore the technologies that will power tomorrow’s wearable, implantable, ingestible and non-contact devices.
Life sciences
See how imec brings the power of chip technology to the world of healthcare.
Sensor solutions for IoT
Dive into innovative solutions for sensor networks, high speed networks and sensor technologies.
Artificial intelligence
Explore the possibilities and technologies of AI.
More expertises
Discover all our expertises.
Research
Be the first to reap the benefits of imec’s research by joining one of our programs or starting an exclusive bilateral collaboration.
Development
Build on our expertise for the design, prototyping and low-volume manufacturing of your innovative nanotech components and products.
Solutions
Use one of imec’s mature technologies for groundbreaking applications across a multitude of industries such as healthcare, agriculture and Industry 4.0.
Venturing and startups
Kick-start your business. Launch or expand your tech company by drawing on the funds and knowhow of imec’s ecosystem of tailored venturing support.
/Job opportunities/Understanding through first-principles simulations ferroelectric / multiferroic materials properties from interfaces to polycrystallinity and switching dynamics

Understanding through first-principles simulations ferroelectric / multiferroic materials properties from interfaces to polycrystallinity and switching dynamics

PhD - Leuven | More than two weeks ago

Explore materials and interfaces at atomic scale to give solutions for next-generation memory technologies

The microelectronics industry is facing a roadblock on the Moore’s law of miniaturization, hence there is a need to employ new physical principles, materials and devices to keep improving the energy efficiency and performance of logic/memory technologies and go beyond simple downscaling. On that front, several emerging memory technologies, based on ferroelectricity/magnetism gain traction. The proposed SCM (Storage Class Memory) is positioned between fast/volatile DRAM and the slow/non-volatile FLASH. One of the possible technologies to use as memory cell would be ferroelectric switching of polarization in a FEFET transistor. Other newly emerging fields, like quantum computers would take advantage of mixed memory-logic devices, built with multiferroic materials.

To help improve the existing technologies or build the medium-to-long-term vision for the future microelectronics devices, there is a need to understand theoretical limitations, properties, and interactions of different ferroelectric / multiferroic materials that build-up complex memory or logic devices. However, these types of materials require deeper understanding in terms of defects, interaction with other materials that they are in contact with (effective work functions, for example), morphology change in time (phase transformations or ferroelectric switching) of complex polycrystalline films, multiferroic interactions, etc.  

In this Ph.D. project, we aim at solving this issue by taking advantage of first-principles simulations, which are excellent for understanding thin films, (metallic electrode) interfaces, electronic/ thermal properties, and the effect of defects on those properties on ferroelectric/multiferroic materials. As such, they can be used to understand and select the best materials for a specific device at hand. If a larger-scale insight is needed to understand the polycrystalline/polydomain ferroelectric switching dynamics in different types of device shapes and sizes, the multiscale approach can be used to feed atomistic-derived data into larger scale models (based on neuromorphic principles, for example) to gain understanding at larger size/time-scales. Building fundamental insights on the materials interaction and evolution in time at different scales will help developing the much-needed theoretical understanding of materials performance and reliability and constitutes the skeleton of this PhD project.

During this project, the PhD. student will be performing state-of-the-art ab initio calculations. Carrying-on this correctly and efficiently requires a proper understanding of the theoretical concepts on which the methods are based and on their implementation in computer code to be executed on super computers. The type of simulations to perform also requires an understanding of the relevant chemistry. The understanding and the necessary skills will be trained at imec.

Eligibility criteria: Master’s degree in physics or chemistry (focusing on theoretical aspects). Due to the complexity and the high amount of individual calculations, an efficient and robust automation and data processing infrastructure is essential. We continuously develop and improve such an infrastructure for all our calculations, written in python. Good knowledge of this language is hence required. A strong motivation, a good knowledge of solid-state physics or quantum chemistry and UNIX/LINUX are a plus. Excellent writing and oral communication skills are desired.



Required background: Solid State Physics / Computational Chemistry / Engineering Science

Type of work: 45% modeling/simulation, 45% data interpretation, 10% literature

Supervisor: Michel Houssa

Co-supervisor: Jan Van Houdt

Daily advisor: Sergiu Clima

The reference code for this position is 2021-015. Mention this reference code on your application form.

This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.