CONAMO

Continue monitoring van atleten

Wielrenners in real time monitoren om gegevens te verzamelen en analyseren waarmee de wielersport, trainingsschema’s en wedstrijdstrategieën geoptimaliseerd kunnen worden: dat is het doel van CONAMO. Bestaande apps voor de wielersport verzamelen dergelijke gegevens wel, maar rapporteren en analyseren de data alleen offline. Het CONAMO-project wil de wielerervaring verbeteren door een mobiele netwerklaag te ontwikkelen, waarbij gegevens in real time worden uitgewisseld en geanalyseerd. Zo worden updates omtrent de positie in het peloton of persoonlijke prestaties van wielrenners onmiddellijk beschikbaar. Die gegevens maken een wereld van verschil voor strategische beslissingen tijdens wedstrijden of om trainingsschema’s optimaal aan te passen.

Transforming cycling into a social experience

The topic of athlete data in cycling is especially relevant in Flanders, the birthplace of many cycling innovations. Real-time data doesn’t just enable cyclists to get an instant overview of their performance for improved training and strategic decision-making; it also makes cycling a social experience, opening up areas of a market in which novelty and added value are key differentiators.

Addressing new technical challenges in real-time data transmission and analysis

By introducing new technologies in the areas of long-range networks and data analysis, CONAMO will address several innovation goals, including:

  • reliable long-range sensor connectivity in high-density networks;
  • a semantic reasoning platform that analyses cyclist data to implement individualized and adaptive training models;
  • increased user experience during training and collective cycling events and the identification of business opportunities for cyclists, fans and media professionals.

In determining what factors spark increased user experience during actual cycling events, the project intends to extend the data-driven cycling experience from ‘post event’ into ‘during event’.

Taking personal training and collective cycling to the next level

CONAMO will collaborate with diverse partners specializing in the areas of athletic training methods, public engagement, the Internet of Things, networking and big data. Two use cases form the core of the project:

  1. preparation for the event in the form of training;
  2. group experience during mass cycling events with a trial planned at a mass cycling event such as the 2018 Tour of Flanders for amateurs.

The project’s living lab will explore how social interaction, storytelling, gamification and smart connections to professional cycling experiences can enhance user experience in both use cases and motivate a wide group of cyclists to train in a healthy way.

Promoting an active lifestyle to a wider group

Fields of investigation and innovation for CONAMO don’t just include the technical and social; the project also seeks to support the creation of a healthier, more responsible and social cycling experience. Cycling continues to grow in popularity around the world, and promoting exercise to a wider group of people is an explicit goal of CONAMO and its collaborators.

"CONAMO seeks to improve both the training for and experience during mass amateur cycling events by continuously monitoring and analyzing the stream of cycling sensor data generated by cyclists and their peers. The project’s goals are to open new market segments, promote an active lifestyle, give cyclists new insights into their training and performance, and transform cycling into a shared experience."

CONAMO

Continue monitoring van atleten.

 

CONAMO is een imec.icon onderzoeksproject gefinancierd door imec en Agentschap Innoveren & Ondernemen.

Het werd opgericht op 01.10.2016 en het project loop tot 30.09.2018.

Download as pdf

Project informatie

Industry

  • Energy Lab
  • Rombit
  • VRT

Research

  • imec - IDLab - UAntwerpen
  • imec - MICT - UGent
  • imec - IDLab - UGent
  • imec - SMIT - VUB
  • imec.livinglabs
  • UGent - Inspanningsfysiologie en Trainingsleer

Contact

  • Project Lead: Ward Jansen
  • Research Lead: Steven Latré
  • Program Manager: Steven Van Assche

Deze website maakt gebruik van cookies met als enige doel het analyseren van surfgedrag, zonder enige commerciële insteek. Lees er hier meer over.

Accepteer cookies