Acoustic powering and stimulation for medical applications

Leuven - Master projects/internships
Meer dan twee weken geleden

Acoustic powering and stimulation for deep implant powering to non-invasive surgical technology

Focused ultrasounds are used for a wide range of medical applications from deep implant powering (where the acoustic transducers are placed outside of the body and steer toward an implant harvesting the acoustic energy) to non-invasive surgical technology (that uses ultrasound energy to target specific areas of the brain and body for treatments).

In order to generate this acoustic power, microscale piezoelectric transducers are fabricated in large arrays with the potential to control the time delay of every single transducer. Beam-forming techniques is then used to focus the pressure on small spots in space at which the high pressure can then be used for the electronic powering or the tissue stimulation.




The left figure above illustrates the principle of a focused pressure beam: the individual transducers are actuated with a time delay calculated such that the pressure is focused on a narrow spot in space, where the pressure is therefore much stronger. The right figure illustrates the acoustic stimulation of mouse tissues while monitoring its reactions.


Based on the available PMUT, technology this master thesis explores the available beam forming strategies to maximize the focused pressure and control the focus spot. Following a thorough literature study and simulations, the proposed solutions will be implemented and tested in water.

Type of project: Internship, Thesis

Duration: 6-12 months

Required degree: Master of Engineering Technology, Master of Science, Master of Engineering Science, Master of Bioengineering

Required background: Biomedical engineering, Electromechanical engineering, Electrotechnics/Electrical Engineering, Materials Engineering, Mechanical Engineering, Nanoscience & Nanotechnology, Physics

Supervising scientist(s): For further information or for application, please contact: Alexandre Halbach ( and Hang Gao ( and Veronique Rochus ( and Pieter Gijsenbergh (

Share this on


Deze website maakt gebruik van cookies met als enige doel het analyseren van surfgedrag, zonder enige commerciële insteek. Lees er hier meer over. Lees ook ons privacy statement. Sommige inhoud (video's, iframes, formulieren,...) op deze website zal pas zichtbaar zijn na het accepteren van de cookies.

Accepteer cookies