Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) of functional coatings for electrochemical sensing

Leuven - PhD
|
Meer dan twee weken geleden

Explore the impact of novel AP-PECVD biomolecular coatings on tomorrow's  electrochemical biosensing systems

Solliciteer

Biosensor and lab-on-chip devices are revolutionizing modern healthcare as they offer great potential for point-of care diagnostics and various bioanalytical applications. A key challenge in biosensor technology is the development of stable, reliable and reproducible interface chemistries for immobilization of the bioreceptors onto the sensor substrate. At imec, we have explored different surface chemistries, mainly self-assembled monolayers, to ensure a covalent binding of the receptors to biosensor devices. Vapor-phase processes offer a good control of the deposition reaction with less chemical usage and result in uniform coatings in micro-structured substrates or microfluidic channels hereby enhancing the integration compatibility with standard CMOS processing flows. The current limitation of our standard CVD and MLD processes is imposed by the low vapor pressure of the precursors that require a too high temperature budget for volatilization. Therefore, we want to explore the use of plasma-based depositions of functional coatings in collaboration with the Molecular Plasma Group (MPG)*. MPG offers a technology called atmospheric pressure plasma-enhanced chemical vapor deposition. The use of inert gases such as argon, helium and nitrogen and the use of small quantities of energy at low operating temperatures makes this method environment-friendly and opens the possibility to deposit precursors with a high vapor presser and to co-deposit different reagents, including intact biomolecules into the deposited layer.
 
In this PhD, the candidate will use the technology offered by MPG to deposit uniform thin layers to produce biosensors in a CMOS environment. In view of the large variety of biosensors that is currently investigated, it is likely that no single coating method will suffice for all applications. In order to make the results of this work as widely applicable as possible, the candidate will develop plasma processes to allow electrochemical detection of inflammatory markers (e.g. C-reactive protein, Tumor Necrosis Factor-α) and detection of metabolites (e.g. glucose, lactose) on selected electrode materials. The candidate will explore the wafer level uniformity, stability and reproducibility, the ability to co-deposit mediators, small molecules and antibodies, the possibilities for area-selective deposition using standard CMOS patterning technologies and/or using optimized nozzle geometries during plasma deposition and finally showcase multiplexed biosensing.
 
*The Molecular Plasma Group (MPG) was founded in 2016 as a spin-off company from the Flemish Institute for Technological Research (VITO), Headquarters in Foetz, Luxembourg and new lab in the Bioincubator, Leuven. Its core competence is surface modification, based on the design, construction and servicing of dedicated atmospheric plasma equipment. MPG offers plasma equipment ranging from lab systems for R&D centres and universities up to industrial in-line systems for continuous production. The markets where MPG is active in are diverse, ranging from automotive, aeronautic, printing, packaging, biotechnology, health and medical devices, etc.

Type of work: 60% experimental, 30 % data interpretation, 10% Literature study

Required background: Chemical engineering or equivalent

Supervisor: Annelies Delabie (KU Leuven)

Co-supervisor: Liesbet Lagae

Daily advisors: Karolien Jans and Rita Vos

The reference code for this position is 2020-115. Mention this reference code on your application form.

Solliciteer

Share this on

truetrue

Deze website maakt gebruik van cookies met als enige doel het analyseren van surfgedrag, zonder enige commerciële insteek. Lees er hier meer over. Lees ook ons privacy statement. Sommige inhoud (video's, iframes, formulieren,...) op deze website zal pas zichtbaar zijn na het accepteren van de cookies.

Accepteer cookies