Optimization of ferroelectric memory cells for next generation SCM

Leuven - PhD
|
Meer dan twee weken geleden

Be at the forefront of emerging memory technology for advanced data storage solutions in the IoT era.

Solliciteer

Because of the ever increasing demand for higher density memory in current electronic systems, nonvolatile memories have gone 3D by stacking many cells vertically on one single chip. However, this (Flash) roadmap suggests a doubling of the number of layers every 2-3 years to keep up with Moore's law. Moreover, due to the low performance of these memories there is room for new memory technologies that can better bridge the gap between DRAM and Flash in order to optimize the system performance. Therefore, alternative (nonvolatile) memory solutions will be needed in the future.

One possible solution to this problem is the ferroelectric field effect transistor (FeFET) which allows for fast and low voltage low power nonvolatile storage. However, many challenges are remaining to be solved before entering the market in a real product, such as controlling the domain configuration and the associated variability, wake-up and imprint effects in the ferroelectric material and various device performance issues such as nucleation delay, cycling and retention.

The purpose of this project is to study and explain the characteristics of 3D as well as 2D FeFETs from the point of view of SCM (Storage Class Memory) specifications as set forward by the systems community. Secondly, new device architectures can be proposed based on this basic understanding of the FeFET operation and implemented in state-of-the-art CMOS technology for the Gigabit and Terabit era.

 

 

Required background: physics, engineering science, nanotechnology

 

Type of work: 20% literature, 20% technology, 60% experimental

Supervisor: Guido Groeseneken, Jan Van Houdt

Daily advisor: Nicolo Ronchi

The reference code for this position is 1812-16. Mention this reference code on your application form.

Solliciteer

Share this on

truetrue

Deze website maakt gebruik van cookies met als enige doel het analyseren van surfgedrag, zonder enige commerciƫle insteek. Lees er hier meer over. Lees ook ons privacy statement. Sommige inhoud (video's, iframes, formulieren,...) op deze website zal pas zichtbaar zijn na het accepteren van de cookies.

Accepteer cookies