
 

 

Hub-based Routing Algorithm Description 

 

1. Introduction 

Physical Internet (PI) is a novel concept of future logistics and supply chain management that 
uses the metaphor of the “data routing” in the Digital Internet into the physical world. For 
transportation, PI breaks a complete route of the traditional view into segments between hubs, 
corresponding to the routers in the Digital Internet, for which PI has a decentralised tendency 
compared with the traditional centralised way of management. Moreover, PI seeks to utilise 
advanced technologies to improve the inefficiency in the current operations. In business 
operation management, PI promotes technologies such as RFID and information system to 
achieve paperless workflow and lower waste. 

In accordance with the logic, the project Physical Internet Living Lab (PILL) explores the 
improvement possibilities in the logistic sector by building a prototype of the PI information system 
and connecting the silo of different types of logistic practitioners, including carriers, forwarders, 
port operators, etc. While to support the validation of interconnection in a virtual and costless 
environment, a digital twin is to be built to mirror the reality and to be used to test what-if scenarios, 
in which a logistic model with a proper routing algorithm that can present PI features is to be 
developed. This piece of writing proposes an intercity PI routing algorithm in agent-based 
modelling (ABM) in which the routing decisions are completely made by PI hubs. 

2. Literature Review 

2.1. Physical Internet 

The concept of PI was formally published and promoted in a journal article for the first time in 2011 
(Montreuil, 2011). It is designed to heavily rely on Internet of Things (IoT) devices and information 
and communication technologies (ICT) to enable real-time computing and control of goods. 
Corresponding supportive infrastructures are also being designed, such as PI hub, PI container, PI 
composer, etc. (Montreuil, 2011). In that sense, PI is formally defined as an open global logistics 
system founded on physical, digital and operational interconnectivity through encapsulation, 
interfaces and protocols (Pan et al., 2017).  

The research of PI has been flourished since 2015 (Ambra et al., 2019), and researchers are now 
focusing on more specific problems of every logistic aspect (Treiblmaier et al., 2020). In the early 
stage, research topics are mostly regarding the development of the PI concept. Montreuil et al. (2012) 
devised a 7-layered Open Logistics Interconnection (OLI) model as the information structure model 
for PI. Sarraj et al. (2014) conduct an in-depth comparison of PI and Digital Internet and prove the 
benefits of PI using a stylised model. Later on, more quantitative studies are published. The 
utilisation of PI hub and other PI related facilities into transportation networks are examined (e.g., 
Ben Mohamed et al., 2017; Sarraj et al., 2014b; Kin et al., 2018), which generally returns positive 



 

 

reflection. Some look at the different operations in PI entities (Walha et al., 2014; Chargui et al., 
2018; Vo et al., 2018). There are also papers focusing on the efficiency of PI containers (Zhang et 
al., 2016; Sallez et al., 2016; Tran-Dang et al., 2017). In addition, information system design is also 
a major stream. It was first considered from the industry background, such as mass-customised 
workshop (Zhong et al., 2016), solar cell industry (Lin and Cheng, 2018), prefabricated construction 
(Chen et al., 2018), etc. Tran-Dang et al. (2020) propose the prototype of PI system layers, and some 
researchers attempt to involve blockchain in PI (Meyer et al., 2019; Betti et al., 2019). However, it 
is also found that when a problem is brought more complicated by multimodality, the research scope 
is often confined to a single hub, and PI research that considers maritime ports is scarce. This 
unimodal tendency of research is also pointed out in Ambra et al. (2019). 

2.2. Agent-based modelling 

Agent-based modelling (ABM) is a computer simulation method that is also used in other 
research domains like cognitive science and economics. The commonality of those research is 
they need ABM to function as a tool to “conceptually bridge between the micro-level of 
assumptions regarding individual agent behaviours, interagent interactions, and so forth and the 
macro level of the overall patterns that result in the agent population” (Smith and Conrey, 2007). 
The appearance of the “overall pattern” is named emergence. According to the object to be 
modelled, ABM defines the agent types and the logic between the agents to construct a digital 
twin and interact with the physical counterpart (Ambra and Macharis, 2020). 

Comparisons of conventional routing schemes and the PI-hub-based routing scheme have been 
studied, and ABM is often used to model the operations within PI hubs. Sarraj et al. (2014) 
propose PI transportation protocols using PI containers and a case study of real data to compare 
the real-life and PI routing scheme. The routing is based on PI hub and agents of different 
functions are set in each hub. In Walha et al. (2016), the multi-agent method is used to model a 
road-rail PI hub to study the allocation problem. ABM is also used to model facilities of higher 
level, such as in Kin et al. (2018) and Sun et al. (2018), agents are set to model on a higher 
scale of the transportation network. The advantage of ABM is that it greatly helps explain the 
relations and mechanisms formed among the defined agents because each agent keeps 
generating data on themselves. Therefore, basically, each study has its own design of agents in 
order to cater for their optimising needs and explain the reality in different ways.  

2.3. Routing algorithms 

Conventionally, the most popular routing problem have been researched is the vehicle routing 
problem (VRP), which can be defined as “the problem to find delivery routes from a depot to a set 
of locations which can minimise the cost subject to the constraints” (Kumar and Panneerselvam, 
2012). For smaller scale VRP, the exact method as mixed-integer programming can provide the 
optimal solution. Whilst with the problem scale increases, additional constraints are also considered, 
such as time window, limited fleet size, the capacity of vehicles, various types of vehicle etc., which 
often makes exact methods intractable (Soonpracha et al., 2014). Thus, heuristics and other 
searching algorithms are developed to find a suboptimal solution in a large search space at an 
acceptable cost of computation power. Usually, the popular algorithms include tabu search, genetic 



 

 

algorithm, simulated annealing, ant colony optimisation, etc. Related studies are too many to be 
referred to here, but they all carefully design the algorithm to cater for the problem settings in each 
research. While more recently they are often to be applied in a combinational way (for example, 
Barma et al., 2019; Chargui et al., 2020).  

However, enough about VRP, because in PILL, the problem is not completely a VRP variant, 
because there are not only trucks but also capacitated trains and barges which run mostly according 
to their schedules, involving cooperation at the business level. In that case, the containers to be 
shipped need to find their own way to their destination and fit the availability of the transportation 
modes and the transition nodes. It is a multi-objective multimodal multi-commodity flow problem 
with schedule (Archetti et al., 2021). A very closely related problem studied is the Intermodal 
Multicommodity Routing Problem with Scheduled Services (Ayar and Yaman, 2012), in which a set 
of commodities is to be picked up and delivered before a specified time for each commodity using 
scheduled maritime services and trucks. The objective is to minimise the incurred cost while 
respecting the time and capacity constraints. With a scale of 100 nodes in two service networks, the 
problem is solved by mixed integer programming models with Lagrangian relaxation. They also 
point out their willingness to devise heuristics for this problem. Nevertheless, their model does not 
consider railway transportation and the complexity brought by scalability. This problem is then more 
studied due to the prevalence of the idea of synchromodality.  

Synchromodal planning “is a form of multimodal planning in which the best possible combination 
of transport modes is selected for every transport order” (Mes, M.R. and Iacob, 2016). It envisions 
allowing the en-route changes to transportation plans. In Zhang and Pel (2016), a path-level freight 
transport model is built with considerations on the time limit, schedule, capacity and multimodality 
at the same time for the first time. Their aim is to compare the cost of intermodal and synchromodal 
by designing a route selection model in a route assigning algorithm for a real-life case. Qu et al. 
(2019) study a similar question by designing a mixed-integer programming model for synchromodal 
transportation with a schedule and time window on a network consisting of 6 nodes.  

It is considered that the optimising problem of more than two modalities on a large network is still 
unexplored (Archetti et al., 2021), and most of the relevant research focuses on small scale networks 
and improved exact methods. However, the growth of problem complexity and scale is thought to 
be faster than the methodological revolution of operational research. Therefore, it makes sense to 
look for heuristic algorithms as what VRP research has been going through. To our best knowledge, 
there is no available heuristic solution is known to solve the multi-objective multimodal multi-
commodity flow problem with schedule for a large network. 

3. Hub-based routing algorithm 

3.1. problem definition 

As the first step in PILL, a transportation network 𝐺𝐺(𝑁𝑁,𝐴𝐴)  of the hinterland area of Port of 
Antwerp and Port of Zeebrugge in the Flanders area is to be studied during all simulation time 𝒯𝒯. 
𝐴𝐴 = {𝑎𝑎𝑡𝑡,  𝑎𝑎𝑟𝑟, 𝑎𝑎𝑏𝑏}, representing the arcs of roadway, railways and in inland water ways (IWWs). 
Logistic practitioners are composed of shipper, carrier, port operator, port authority, terminal 



 

 

operator, which involves the planning of trucks 𝑉𝑉 𝑇𝑇 , trains 𝑉𝑉 𝑅𝑅, and barges 𝑉𝑉 𝐵𝐵. The shipper has a 
set of orders 𝐾𝐾 to be shipped, measured by a set of containers 𝐶𝐶𝑘𝑘 and time window 𝑡𝑡𝑘𝑘 for each 
order 𝑘𝑘 ∈ 𝐾𝐾. Each container 𝑐𝑐 ∈ 𝐶𝐶𝑘𝑘 is characterised by the origin, destination, cargo type, and 
delivery time (𝑜𝑜𝑐𝑐 ,𝑑𝑑𝑐𝑐 , 𝜏𝜏𝑐𝑐 , 𝑡𝑡𝑐𝑐). The time window for early and late delivery 𝑡𝑡𝑘𝑘 = {𝑡𝑡𝑘𝑘

𝐸𝐸, 𝑡𝑡𝑘𝑘
𝐿𝐿} of order 

𝑘𝑘  should be respected, in which 𝑡𝑡𝑘𝑘
𝑒𝑒 = min{𝜏𝜏1, 𝜏𝜏2,… , 𝜏𝜏𝑐𝑐} , 𝑡𝑡𝑘𝑘

𝑙𝑙 = max{𝜏𝜏1, 𝜏𝜏2,… , 𝜏𝜏𝑐𝑐} ,
𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑎𝑎𝑐𝑐ℎ 𝑐𝑐 ∈ 𝐶𝐶𝑘𝑘. Trucks are flexible while trains and IWW barges are operated according to their 
respective schedule. The available capacity of all trucks 𝐷𝐷𝑇𝑇 , train 𝐷𝐷𝑅𝑅, barges 𝐷𝐷𝐵𝐵 and PI nodes 
𝐷𝐷𝑁𝑁   should be considered. For the capacity of each truck element at time 𝑡𝑡 , there are 𝐷𝐷𝑇𝑇 =
�𝑑𝑑𝑡𝑡

𝑇𝑇𝑢𝑢�𝑢𝑢 = 1, 2,… , 𝑢𝑢𝑡𝑡, 𝑡𝑡 ∈ 𝒯𝒯}, the same for 𝑑𝑑𝑡𝑡
𝑅𝑅, 𝑑𝑑𝑡𝑡

𝐵𝐵and 𝑑𝑑𝑡𝑡
𝑁𝑁 , and 𝐷𝐷𝑉𝑉 = 𝐷𝐷𝑇𝑇 ∪ 𝐷𝐷𝑅𝑅 ∪ 𝐷𝐷𝐵𝐵. And for 

IWWs, the class and capacity are also to be considered. It is also necessary to take scalability into 
consideration because PILL builds a prototype, which means it should have the potential to 
accommodate more parties in the future. The network should have the ability to replan the route 
when unexpected manifestations of changes occur to the current route (e.g., traffic jam, order 
cancellation). The good thing is, PI enables the connection between parties which are not possible 
in the past. The aim of this algorithm is to support the comparison between PI and conventional 
transportation patterns in a quantitative way. 

3.2. Algorithm design 

The algorithm starts with the ABM method, which breaks the problem into different agent types and 
defines their behaving logic. In this algorithm, there are two types of agents, active and passive 
agents. Active agents are the PI nodes 𝑛𝑛 ∈ 𝑁𝑁   in the transportation network, performing as an 
intermodal centre, transition depot, etc., which has the computing power to communicate and make 
decisions in route planning. Passive agents are the PI movers 𝑉𝑉 = 𝑉𝑉 𝑇𝑇 ∪ 𝑉𝑉 𝑅𝑅 ∪ 𝑉𝑉 𝐵𝐵, referring to all 
the traffic modes in the network. The outcome of this algorithm is a solution 𝑆𝑆𝑐𝑐 for each container 
𝑐𝑐 ∈ 𝑘𝑘, and the solution of an order 𝒮𝒮𝑘𝑘 = {𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑐𝑐}. 𝑃𝑃  denotes the set of all the candidate 
plans 𝑝𝑝 . Each 𝑝𝑝  is defined by (𝒜𝒜, 𝐹𝐹 , 𝜔𝜔) , in which 𝒜𝒜 =
�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑣𝑣,𝑡𝑡 ⋅ 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑣𝑣,𝑡𝑡�𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑖𝑖 ≠ 𝑗𝑗, 𝑣𝑣 ∈ 𝑉𝑉 � ∖ {0}, 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑣𝑣 ∈ 𝐴𝐴 , representing that the container is 
brought from 𝑖𝑖 to 𝑗𝑗 by vehicle 𝑣𝑣 at time 𝑡𝑡; 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑣𝑣,𝑡𝑡 is decision variable; 𝐹𝐹  is the total cost; and 
𝜔𝜔  is a flag to show whether the plan is in the end state. Thus, 𝑆𝑆𝑐𝑐 = 𝑝𝑝𝑜𝑜𝑜𝑜𝑡𝑡  where 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑚𝑚𝑖𝑖𝑛𝑛 {𝐹𝐹𝑜𝑜|𝑝𝑝 ∈ 𝑃𝑃}, break the tie arbitrarily if there is any. By end state, it means either this plan has 
reached the destination of the order, or the plan violates hard constraints.  

By default, 𝐹𝐹  is the objective function to be minimised, which is calculated as follows: 

𝑇𝑇𝑓𝑓 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒: 𝐹𝐹 = �𝑓𝑓𝑖𝑖 + 𝛽𝛽 ⋅ 𝑇𝑇𝑘𝑘
𝑑𝑑𝑒𝑒𝑣𝑣

𝑖𝑖
, 𝑖𝑖 ∈ 𝑁𝑁  (1) 

𝑓𝑓𝑖𝑖 = 𝛼𝛼𝑖𝑖1 ⋅ 𝑡𝑡𝑓𝑓𝑎𝑎𝑣𝑣𝑒𝑒𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡 𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 + 𝛼𝛼𝑖𝑖2 ⋅ 𝑣𝑣𝑒𝑒ℎ𝑖𝑖𝑐𝑐𝑡𝑡𝑒𝑒 𝑐𝑐𝑓𝑓𝑚𝑚𝑡𝑡 + 𝛼𝛼𝑖𝑖3 ⋅ 𝐶𝐶𝑂𝑂2 𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑓𝑓𝑛𝑛 + ⋯ , 𝑖𝑖 ∈ 𝑁𝑁 (2) 
  

where 𝜶𝜶 = [𝛼𝛼𝑖𝑖1, 𝛼𝛼𝑖𝑖2,… , 𝛼𝛼𝑖𝑖𝑖𝑖]−1  is a vector containing the user-defined weight parameters, and 
𝑇𝑇𝑘𝑘

𝑑𝑑𝑒𝑒𝑣𝑣 is the time window deviation: 



 

 

𝑇𝑇𝑘𝑘
𝑑𝑑𝑒𝑒𝑣𝑣 =

⎩
��
�
⎨
��
�
⎧𝑖𝑖𝑛𝑛𝑓𝑓, 𝑑𝑑𝑡𝑡𝑘𝑘

𝑙𝑙
𝑁𝑁 < |𝐶𝐶𝑘𝑘|, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡𝑘𝑘

𝑙𝑙 < 𝑡𝑡𝑘𝑘
𝐸𝐸 𝑓𝑓𝑓𝑓 𝑡𝑡𝑘𝑘

𝑙𝑙 > 𝑡𝑡𝑘𝑘
𝐿𝐿

𝑝𝑝1, 𝑑𝑑𝑡𝑡𝑘𝑘
𝑙𝑙

𝑁𝑁 ≥ |𝐶𝐶𝑘𝑘|, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡𝑘𝑘
𝑙𝑙 < 𝑡𝑡𝑘𝑘

𝐸𝐸

𝑟𝑟 ⋅ (𝑡𝑡𝑘𝑘𝐿𝐿 − 𝑡𝑡𝑘𝑘𝑙𝑙 )−1, 𝑡𝑡𝑘𝑘
𝐸𝐸 ≤ 𝑡𝑡𝑘𝑘

𝑙𝑙 ≤ 𝑡𝑡𝑘𝑘
𝐿𝐿

𝑝𝑝2, 𝑑𝑑𝑡𝑡𝑘𝑘
𝑙𝑙

𝑁𝑁 ≥ |𝐶𝐶𝑘𝑘|, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡𝑘𝑘
𝑙𝑙 > 𝑡𝑡𝑘𝑘

𝐿𝐿

  

  
where 𝑝𝑝1, 𝑝𝑝2 > 0, 𝑓𝑓 < 0. By this, it is encouraged to deliver on time rather than too early, and the 
maximum throughput of the network is expected to be increased, i.e., the network can deliver more 
goods on time. 

The communication logic is defined for the active agents as their behaving logic, and a route is 
concluded through communication (demonstration shown in Figure 1). When an order 𝑘𝑘 is input 
to the system, data will be updated to relevant nodes in the network. According to the 𝑓𝑓𝑐𝑐 and 𝑡𝑡𝑘𝑘, 
𝑛𝑛𝑜𝑜  sends message to 𝑛𝑛𝛿𝛿 , where 𝑛𝑛𝑜𝑜 = 𝑓𝑓𝑐𝑐 , 𝑛𝑛𝛿𝛿 ∈ 𝑁𝑁   and 𝑛𝑛𝛿𝛿 ≠ 𝑛𝑛𝑜𝑜 . Then for 𝑛𝑛𝛿𝛿 , it checks its 
available capacity 𝑑𝑑𝑡𝑡

𝑖𝑖𝛿𝛿  before the late delivery time limit 𝑡𝑡𝑘𝑘
𝐿𝐿. For order 𝑘𝑘, if 𝑛𝑛𝛿𝛿 finds any feasible 

slot [𝑡𝑡1, 𝑡𝑡2] that meets the following hard constraints, it will respond to 𝑛𝑛𝑜𝑜 according to the slots: 

��𝑑𝑑𝑡𝑡
𝑣𝑣 ⋅ 𝑎𝑎𝑖𝑖𝑜𝑜,𝑖𝑖𝛿𝛿,𝑣𝑣,𝑡𝑡

𝑡𝑡𝑣𝑣
≥ |𝐶𝐶𝑘𝑘|, 𝑛𝑛𝑜𝑜, 𝑛𝑛𝛿𝛿 ∈ 𝑁𝑁,𝑛𝑛𝑜𝑜 ≠ 𝑛𝑛𝛿𝛿, 𝑣𝑣 ∈ 𝑉𝑉 , 𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1 ≤ 𝑡𝑡𝑘𝑘

𝐿𝐿 (3) 

��𝑎𝑎𝑖𝑖𝑜𝑜,𝑖𝑖𝛿𝛿,𝑣𝑣,𝑡𝑡
𝑡𝑡𝑣𝑣

≤ 1, 𝑛𝑛𝑜𝑜, 𝑛𝑛𝛿𝛿 ∈ 𝑁𝑁, 𝑛𝑛𝑜𝑜 ≠ 𝑛𝑛𝛿𝛿, 𝑣𝑣 ∈ 𝑉𝑉 , 𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1 ≤ 𝑡𝑡𝑘𝑘
𝐿𝐿 (4) 

 
Figure 1. Demonstration of the route planning process 



 

 

𝑑𝑑𝑡𝑡1

𝑖𝑖𝛿𝛿 , 𝑑𝑑𝑡𝑡𝑤𝑤

𝑖𝑖𝛿𝛿, 𝑑𝑑𝑡𝑡2

𝑖𝑖𝛿𝛿 ≥ |𝐶𝐶𝑘𝑘|, 𝑛𝑛𝛿𝛿 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝐾𝐾, 𝑡𝑡0 ≤ 𝑡𝑡𝑤𝑤 ≤ 𝑡𝑡2 ≤ 𝑡𝑡𝑘𝑘
𝐿𝐿 (5) 

  
(3) ensures there is a transportation mode can deliver goods to 𝑛𝑛𝛿𝛿 to meet the given feasible slot 
[𝑡𝑡1, 𝑡𝑡2]; (4) ensures the dedicated transportation mode has enough capacity to transport the |𝐶𝐶𝑘𝑘| 
containers of order 𝑘𝑘 so that the order is not delivered in batches; (5) ensures enough handling 
capacity during a given feasible slot [𝑡𝑡1, 𝑡𝑡2]. By this, some bud plans are created, and more plans 
will grow and branch from the bud plans later. 

Next, for each plan 𝑝𝑝 in 𝑃𝑃 , the last node of 𝑝𝑝 is responsible to send message to all the other 
accessible nodes 𝑛𝑛𝛿𝛿+ . The asked nodes calculate 𝑓𝑓𝑖𝑖𝛿𝛿+  and reply messages according to the hard 
constraints (3), (4) and (5) of themselves, and check the end status. 𝑝𝑝 is grown and branched by 
updating 𝒜𝒜𝑜𝑜, 𝐹𝐹𝑜𝑜 and 𝜔𝜔𝑜𝑜. However, the selection of 𝑝𝑝 should always be the one with the least 
depth |𝒜𝒜|. In that way, the algorithm becomes the equivalent of a breadth-first search (BFS). When 
all the 𝑝𝑝 in 𝑃𝑃  are in the end state, 𝑆𝑆𝑜𝑜𝑜𝑜𝑡𝑡 is concluded by comparing {𝐹𝐹𝑜𝑜|𝑝𝑝 ∈ 𝑃𝑃}. 

3.3. Searching Space Limiting Methods 

For a larger network, BFS is less efficient due to the exponentially increasing searching space. Some 
cutting methods are needed. First of all, the branch and bound method can be used in BFS. In this 
context, when a feasible route is found with the cost 𝑓𝑓𝑏𝑏, any other branch from which the plans that 
are to be grown cost at least 𝑓𝑓𝑏𝑏 will be cut and marked to end state. 

Moreover, user-preference settings can also help to cut the searching space. Users can not only 
define 𝜶𝜶 , but also add hard constraints. For example: do not accept solutions with travelling 
distance more than a certain number. Or it is even possible to confine some parameters not included 
in the objective function 𝐹𝐹 , like do not accept solutions of more than a certain time of transition in 
hubs. 

For a larger transportation network, it is unrealistic to ask all the nodes on a graph for each step in 
each plan. Therefore, other auxiliary routing heuristics which are used for VRPs can be added while 
omitting the complex realistic settings (capacity, transportation mode availability, etc.). This way 
the problem is simplified, and more advanced algorithms become available with delicate designs 
such as A* and genetic algorithm. These extra heuristics can help the nodes to point out a specific 
group of nodes to ask for messages rather than ask all the nodes for replies. 

4. Discussion 

In this piece of writing, a routing algorithm is introduced which can be used in a complex but 
realistic background using the ABM method. The advantages of using this algorithm are:  

 Good compatibility with other algorithms or methods. Due to the flexible ABM method, if the 
problem to be treated grows more complicated (and it will because PILL is a prototype towards 
universal application), auxiliary algorithms can be plugged and used easily.  



 

 

 Decentralised computing power. PI and ABM have a decentralisation tendency, which becomes 
more advantageous especially in a large network. Considering the real-life application in the 
future, it could be energy-consuming and unsafe to route in a centralised way, while it is not 
too decentralised to grant every truck, train and barge the computational power. The power is 
bounded in the nodes, which is beneficial for scalability. 

 Supporting to test more functions. As so far, not much has come true in PI, and we thus need 
an algorithm that is able to accommodate the current and future operations so that comparisons 
and conclusions can be carried out. For example, if disruptions occurred while the order is en 
route, PILL allows the route to be replanned and information is changed timely between the 
companies; if (4) is relaxed and (2) is changed accordingly, the PI feature of batched delivery 
can be tested; by varying the vector 𝜶𝜶, the variation of individual perspectives and its resulting 
effects of the overall perspective can then be studied; as the trains and barges are operated 
according to a schedule, and ABM allows to define individual logic, it could be useful to 
involve learning mechanism for the nodes. 

However, BFS is a simple searching method. Without a quantitative study of the algorithm 
performance, it could happen that this algorithm works inefficiently, and auxiliary algorithms are 
needed to be introduced earlier than expected to solve the problem.  
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