/Intelligent sensor fusion for low-power multi-modal applications

Intelligent sensor fusion for low-power multi-modal applications

PhD - Antwerpen | More than two weeks ago

Enabling future smart perception systems for intelligent transportation and robotics

Many applications benefit from or rely on the use of information of different modalities. A well know application is the automotive domain where cars become more and more intelligent using different kinds of sensors. In future cars, we will find different cameras, radar, lidar technologies and potentially even others. However, the operation and processing costs of these technologies (in terms of power and resource consumption) are high. In this PhD research, we want to explore how to perform this process more efficiently and develop novel techniques that overall decrease power consumption, while achieving equal or better performance than their counterparts. For example, we can also study the impact of deliberate degradation of sensor outputs (to lower resource consumption), while at the same time enriching the data stream with cross modality information (to increase accuracy).

 An additional challenge lays in the applicability of this work to novel sensor technology or concepts that do not fully exist yet. It is often hard to estimate the impact of design choices and novel sensors upfront as it takes long to create workable prototypes. Hence, this topic also focusses on researching efficient ways of abstracting and implementing novel sensor (concepts) in a realistic simulation environment. One of the challenges will be to research techniques to efficiently mimic realistic behaviour and to account for sensor behaviour under different (physical) circumstances (reflection, scattering, blockage, …). This work can, next to the automotive context, also be applied to other applications fields such as robotics or remote sensing use cases. Some relevant publications are: [1] and [2].

We offer you a challenging, stimulating and pleasant research environment, where you can contribute to international research on artificial intelligence with a close link to the underlaying hardware. Within this topic you will be working together with imec hardware, sensor development and university teams on jointly coming up with novel solutions.

Our ideal candidate for this position has the following skills:

  • You have a Master’s degree in Computer Science, Informatics, Physics, Engineering or Electronics.
  • You have knowledge about artificial intelligence and machine learning
  • You have interest in algorithmic and system design
  • You have good programming skills and are flexible in the use of software and coding tools or libraries (git, pytorch, tensorflow, …)
  • Understanding of the physics and properties of different sensor modalities (lightwaves, radiowaves, etc.) is considered a plus.
  • Understanding of hardware paradigms is considered a plus
  • You are able to plan and carry out your tasks in an independent way.
  • You have strong analytical skills to interpret the obtained research results.
  • You are a responsible, communicative and flexible person.
  • You are a team player.
  • Your English is fluent, both speaking and writing




[1] Gruber, T., Julca-Aguilar, F., Bijelic, M., & Heide, F. (2019). Gated2depth: Real-time dense lidar from gated images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1506-1516).

[2] M. Dimitrievski, D. Van Hamme and W. Philips, "Perception System based on Cooperative Fusion of Lidar and Cameras," 2022 IEEE Sensors, Dallas, TX, USA, 2022, pp. 1-4, doi: 10.1109/SENSORS52175.2022.9967331.

Required background: Master’s degree in Computer Science, Informatics, Physics, Engineering or Electronics, with knowledge about artificial intelligence and machine learning

Type of work: Modelling, algorithmic and system design, experimentation, literature study

Supervisor: Steven Latré

Co-supervisor: Tom De Schepper

Daily advisor: Julie Moeyersoms

The reference code for this position is 2024-091. Mention this reference code on your application form.

Who we are
Accept marketing-cookies to view this content.
Cookie settings
imec's cleanroom
Accept marketing-cookies to view this content.
Cookie settings

Send this job to your email