Imec presents a manufacturable solution for field-free switching operation of Spin-Orbit Torque MRAM devices

KYOTO (Japan), JUNE 13, 2019 — This week, at the 2019 Symposia on VLSI Technology and Circuits (June 9-14, 2019), imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, demonstrates field-free switching operation of spin-orbit torque MRAM (SOT-MRAM) devices – eliminating the need for an external magnetic field during write operation. The concept is manufacturing-friendly and does not compromise the reliability and sub-ns writing performance of the SOT-MRAM devices. The new field-free switching concept opens possibilities for the further development of MRAM-based technologies and non-volatile logic and memory applications (such as non-volatile latch circuits and flip-flops).

At the 2018 Symposia on VLSI Technology and Circuits, imec demonstrated the possibility of fabricating state-of-the-art SOT-MRAM devices on 300mm wafers using CMOS-compatible processes. These SOT-MRAM devices are a class of non-volatile memories that, thanks to a high endurance and sub-ns switching speed, can potentially replace fast L1/L2 SRAM cache memories. Writing of the memory elements is performed by injecting an in-plane current in a SOT layer that is adjacent to a magnetic tunnel junction (MTJ). During write operation, a small in-plane magnetic field is required to break symmetry and ensure deterministic magnetization switching. In today’s devices, this is done by applying an external magnetic field, which is recognized as a major hurdle for the practical use of these devices.

Imec has proposed a reliable ‘field-free’ switching concept that consists of embedding a ferromagnet in the hardmask that is used to shape the SOT layer. With this ferromagnet, a small homogeneous in-plane field is induced on the free layer of the magnetic tunnel junction.

“A major advantage of imec’s integrated solution compared to other proposed solutions, is the ability to separately optimize the properties of the magnetic tunnel junction and the conditions of the field-free switching”, explains Gouri Sankar Kar, program director at imec. “This ‘de-coupling’ turns our field-free switching solution into a manufacturing friendly concept, which is a major requirement for the high-volume production of SOT-MRAM devices.”

With writing speeds below 300ps and unlimited endurance (up to 1011 cycles) – measured on multiple devices across a 300mm wafer – the approach is shown to be reliable while preserving the original sub-ns writing of the SOT-MRAM devices.

“This confirms the potential of the SOT-MRAM devices for replacing SRAM at low-level caches”, adds Gouri Sankar Kar. “Moreover, the new field-free switching concept can potentially be applied to other MRAM-based technologies such as spin-transfer torque MRAM (STT-MRAM) and voltage-controlled magnetic anisotropy (VCMA), and opens doors to other non-volatile logic and memory applications such as non-volatile flip-flop and non-volatile latch circuits.”

Future work will focus on further reducing the energy consumption of the SOT-MRAM devices by bringing down the switching current.

More information: https://www.imec-int.com/en/semiconductor-technology-and-systems

 

Read more
Hanne Degans
press communications manager - imec

About imec

Imec is a world-leading research and innovation hub in nanoelectronics and digital technologies. The combination of our widely acclaimed leadership in microchip technology and profound software and ICT expertise is what makes us unique. By leveraging our world-class infrastructure and local and global ecosystem of partners across a multitude of industries, we create groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, energy and education.

As a trusted partner for companies, start-ups and universities we bring together more than 4,000 brilliant minds from over 97 nationalities. Imec is headquartered in Leuven, Belgium and has distributed R&D groups at a number of Flemish universities, in the Netherlands, Taiwan, USA, and offices in China, India and Japan. In 2018, imec's revenue (P&L) totaled 583 million euro. Further information on imec can be found at www.imec-int.com.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Government of Flanders), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.), imec China (IMEC Microelectronics (Shanghai) Co. Ltd.), imec India (Imec India Private Limited) and imec Florida (IMEC USA nanoelectronics design center).

This website uses cookies for analytics purposes only without any commercial intent. Find out more here. Our privacy statement can be found here. Some content (videos, iframes, forms,...) on this website will only appear when you have accepted the cookies.

Accept cookies